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ABSTRACT 

 
This paper presents a fuzzy-logic model for predicting the risk of crashes that occurs 

on wet pavements. The statistical methods that have been used to predict wet-pavement crashes 
have been found inadequate due to the difficulty expressing the mathematical concepts involved 
with wet-pavement crashes and the uncertainty and fuzziness associated with the factors 
involved. Fuzzy logic model was adopted because it is easy to understand, tolerant to imprecise 
data, can model nonlinear functions of enormous complexity, and can be built on the experience 
of experts. The developed fuzzy logic model was based on the widely used Mamdani's 
fuzzy-inference method.  The model uses skid number, speed differential, traffic volume, and 
driving difficulty as input variables and the number wet-pavement crashes as the output variable. 
The results of the prototype indicate that the fuzzy logic model performs very well, even with 
the limited and imprecise data available.  
 

1. INTRODUCTION 
 

Wet-pavement crashes occur when a vehicle's wheels lock up during braking or 
cornering maneuvers, leading to loss of the vehicle's directional stability. They are the 
result of a variety of factors from reduced tire/pavement friction to vehicular, roadway, 
human, and environmental factors.  How to predict and prevent the occurrence of 
wet-pavement crashes are some of the main issues facing highway departments, 
especially concerning the allocation of funding. The methodologies used in identifying 
road sections that are in need of improvements to prevent wet-pavement crashes are the 
analysis of crash statistics or measurement of pavement skid resistance. Both methods 
have major deficiencies, the former requires that skid-related crashes occur and cluster 
at certain locations while the latter is not only difficult to measure but is only one of the 
many factors that affect wet-pavement crashes. Recent studies have found that 
pavement skid resistance is inadequate as it correlates very poorly with the number of 
wet-pavement crashes. Researchers have also found out that wet-pavement crashes are 
random events, and that their occurrences are related to a variety of vehicle, pavement, 
human, roadway, and environmental factors such as vehicle speed, road geometry, 
traffic density, percentage of trucks in the traffic flow, and wet-pavement exposure. The 
main objective of this paper is to develop a prototype fuzzy logic model for predicting 
wet-pavement crashes as a function of driver, vehicular, roadway, traffic, and 
environmental variables. Such prototype can evolve into a tool for identifying sections 
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of roadway that are likely to have more wet-pavement crashes than normal for safety 
improvements.  
 
 

2. WHY USE FUZZY-LOGIC MODEL 
 

To justify the use of fuzzy logic for modeling the risk of wet-pavement crashes, 
consider Figure 1, which is mapping inputs to the appropriate outputs. In between the 
input and the output is a black box that does the mapping, i.e., the mechanism 

underlying the system. This system could be fuzzy systems, linear systems, expert 
systems, neural networks, differential equations, interpolated multidimensional lookup 
tables, just to name a few of the possible options. It turns out that, of the different 
ways to make the black box work, fuzzy logic is the best.  
 
 
 

FIGURE 1 
Mechanism of Fuzzy Logic Model 

 
 

Fuzzy logic is conceptually easy to understand. The mathematical concepts 
behind fuzzy reasoning are very simple. In addition, fuzzy logic is flexible. With any 
given system, it is easy to manipulate it or add more functionality on top of it without 
starting again from scratch. Fuzzy logic is tolerant of imprecise data and it builds on this 
understanding. Also, fuzzy logic can model nonlinear functions of greater complexity. 
You can create a fuzzy system to match any set of input-output data through adaptive 
techniques. Besides, it can be built on top of the experience of experts who already 
understand the system and can be blended with conventional control techniques to 
simplify their implementation. 
 

The four primary factors that affect wet-pavement crashes and were selected as 
input variables for the fuzzy logic model are: pavement skid resistance (SN), speed 
differential (SD)—speed above the allowable speed limit, traffic volume (TV) in term of 
average daily traffic, and driving difficulty (DD). All of the input variables involve some 
degree of uncertainty, subjectivity, or fuzziness in their values because of its 
measurements or meaning. Skid resistance can be referred to as simply "high, medium, 
or low." The speed at which vehicles are traveling above the posted speed limit can be 
described as "high, medium, or low." Similar reasoning can be used to make a case for 
fuzziness of traffic volumes as "high, medium, or low." Driving difficulty is also fuzzy 
and can have a fuzzy meaning of low, medium, and high driving difficulty. The output 
variable from the system, number of wet-pavement crashes (WC) can be described in 
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fuzzy terms of "high, medium, or low." This uncertainty or fuzziness is what makes a 
fuzzy logic model a suitable approach in this study. Very little knowledge of the system 
exists in the form of mathematical equations expressing the risk of wet-pavement crashes 
as a function of the input variables. On the other hand, there is considerable subjective 
knowledge in the form of information about the effects of the input variables on the 
output variable through years of research.  
 

3. METHODOLOGY OF FUZZY LOGIC MODEL 
 

There are two types of fuzzy inference systems, Mamdani-type and Sugeno-type. 
These two types of inference systems vary somewhat in the way outputs are determined. 
The Mamdani fuzzy logic model used in this study for estimating wet-pavement crashes 
is the most commonly used fuzzy methodology and was proposed by Ebrahim Mamdani 
in 1975, when he used fuzzy-control rules that were developed from experienced human 
operators to control a steam boiler based on the fuzzy-set theory formulated by Zadeh in 
1973. The rules consist of a set of “if-then” rules.  
 

Fuzzy inference is the process of formulating the mapping from given inputs to an 
output using fuzzy logic. The mapping then provides a basis from which decisions can 
be made, or patterns discerned. The process of fuzzy inference involves membership 
functions, fuzzy logic operators, and if-then rules. There are five parts of the fuzzy 
inference process:  
 

• Fuzzification of the input variables 
• Application of the fuzzy operator (AND or OR) in the antecedent 
• Implication from the antecedent to the consequent 
• Aggregation of the consequents across the rules 
• Defuzzification.  

 

3.1 Fuzzification of Input Variables 

 
First, the inputs variables were examined to determine the degree to which they 

belong to each of the appropriate fuzzy sets via membership functions. This was done 
either through a table lookup or a function evaluation or from previous research. In 
designing the membership functions, we consulted the literature and previous research 
for more information on threshold values, shape of function, and sensitivity of the 
variables.  
 

To fuzzify input and output domain, the number and quantification levels of 
each variable's membership function was estimated. A membership function is a curve 
that defines how each point in the variable space is mapped to a membership value 
between 0 and 1. In this study, the membership functions were built on three rules, and 
each of the rules depends on resolving the inputs into a number of different fuzzy 
linguistic sets: condition is low, condition is medium, and condition is high. The shape 
membership functions were selected from the point of view of simplicity, convenience, 
and efficiency. Trapezoidal and triangular membership functions were used as both are 
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quite simple and have been used extensively in many applications. This choice of a 
particular shape for a membership function is a trade-off between accuracy and 
simplicity. Each of the input variables was fuzzified into three fuzzy sets: low, medium, 
and high and the membership functions are shown in Figure 2.  
 

  
 

FIGURE 2 
Membership Functions of the Input Variables 

 
Skid Resistance 
 

Skid resistance values are rarely accurate as they involve many factors that 
difficult to measure in the field. The most difficult parameter to estimate is the 
coefficient of friction between the tires of the vehicle involved in the crash and the 
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pavement surface on which the crash occurred. The tire-pavement friction is affected by 
the type and condition of the vehicle tires, vehicle suspension, and vehicle load and load 
distribution. Water film thickness and pavement surface characteristics are also 
important factors that affect tire-pavement friction. The available friction depends on 
the pavement skid resistance which is a function of vehicle speed, road geometry, traffic 
characteristics, vehicle characteristics (including vehicle type and it's under steer), and 
driver skills. Whether or not this particular SN is high enough to prevent wet crashes 
cannot be determined unless the demand for friction on the section of road under 
consideration is known. If skid number is not available, a handbook value of the 
coefficient of friction is used. SN is measured at 40 mi/h. As skid number increases the 
pavement frictional characteristics improve. Results of skid resistance measurements 
provide the basis for pavement management safety decisions. In general, SN less than 
30 are considered low and SN over 40 is considered acceptable. In this study, if the skid 
number is smaller than 30, the fuzzy value of skid resistance is low, and its degree of 
membership is 0.7 0r higher. At the same time, if the skid number is between 35 and 50, 
the fuzzy value of skid resistance is medium with 0.6 degree membership. In a similar 
way, the other input variables were fuzzified as well as the output membership 
functions.  
 
Speed Differential 
 

Speed is a critical factor for the balance between friction demands and supply 
because it: affects both. When speed increases, friction demand also increases. For 
instance, centrifugal forces generated during vehicle cornering must be counteracted by 
tire-pavement friction forces to prevent a vehicle from skidding off the road are 
proportional to the square of vehicle speed. At the same time skid resistance decreases 
with increasing speed in an approximately exponential manner. Posted speed limits serve 
to protect drivers under various environmental conditions. Therefore traveling over the 
speed limit under wet pavement conditions subjects the driver and vehicle to conditions 
that the road was not designed for, increasing risk of wet-pavement crashes. In this study, 
speed differential under 5 mph is considered low with member function of 0.8 or higher. 
Speed differential of 7 to 12 mph is considered medium with membership function of 0.8 
or higher; 20 to 25 mph is considered high with membership function of 0.8 or higher.   
 
Traffic Volumes 
 

Traffic volume including its composition (cars, trucks, and buses) directly affects 
the number wet pavement crashes. In particular the percentage of trucks in the traffic flow 
has a significant effect on friction demand. This is because the stopping distances of 
trucks are 1.3 to 2.8 times longer than the stopping distances of passenger cars. In 
addition, drivers adjust for the presence of heavy vehicles by giving a larger lateral 
clearance and longer headway and at times driving faster or slower to avoid following or 
being followed by a heavy vehicle. The traffic volumes were expressed in average daily 
traffic (ADT). In designing the membership functions for traffic volume, ADTs under 
40,000 vehicles per day is considered low with membership function of 0.8 or higher; 
ADT in the range 50,000 to 70,000 is considered medium with membership function of 
0.8 or higher. ADT over 80,000 is considered high with membership function of 0.7 or 
higher. 
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Driving Difficulty 
 

A number of conditions affect driving including but not limited to prevailing 
highway geometric, traffic volumes, traffic control devices, human factors, and 
conditions of the vehicle. As the roadway geometric conditions such as horizontal and 
vertical alignments become more restrictive, drivers slow down and exercise more 
caution. Also, narrow lanes force drivers to drive closer to one another than usual and 
adjust for this by driving slower arid observe longer headways. The impact of lateral 
obstruction also has a similar effect. The amount of driving difficulty required for safe 
driving is strongly affected by road geometry. Driving difficulty demand on straight 
sections of roads is very low if the road is level, if vehicles travel at constant speed, and 
if there are no intersections. The demand increases significantly if a grade or curve must 
be negotiated. In addition, researchers have determined that pavement crash rates are 
significantly higher on curves than on any other type of geometric alignment. The 
criteria determining driving difficulty include number of access points per segment of 
road, presence of turn lanes, type of surrounding land use, traffic signalization, and the 
roadway cross section. In addition to above-mentioned factors, lane distributions, lane 
use controls at intersections and on freeways also increases driving difficulty. All of 
these factors contribute directly to wet pavement crashes and are very difficult to 
quantify mathematically but can be modeled through fuzzy logic models. In this study, 
driving difficulty under 2 is considered low or easy with member function of 0.8 or 
higher; driving difficulty between 3 and 4 is considered medium with membership 
function of 0.8 or higher; driving difficulty of 5 or more is considered high with 
membership function of 0.8 or higher.   
 

3.2 Application of Fuzzy Operators 
 

Once the inputs were fuzzified, a fuzzy operator was applied to combine the 
antecedent of each rule to obtain one number that represents the result of the 
antecedent for that rule. It is this number that was applied to the output function. In 
other words, the input to the fuzzy operator is the four membership values from the 
fuzzified input variables, and the output is a single truth-value that is the weight of that 
rule. The weight of a rule is mathematically expressed as: 
 

Wi = µsni Λ  µsdi Λ µtvi Λ µddi        
 

where, Wi = weight of Rule i 
µsni = degree of membership of pavement skid resistance 
µsdi = degree of membership of speed differential 
µtvi = degree of membership of traffic volume 
µddi = degree of membership of driving difficulty 

 
For example the four different pieces of the antecedent (skid resistance is good 

and traffic volume is low and speed is low and driving difficulty is low) may yield fuzzy 
membership values of say 0.1, 0.5, 0.3, and 0.7 respectively. The fuzzy AND operator 
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simply selects the minimum of the four values, 0.1.  
 

3.3 Implication of Rule 
 

A three-rule fuzzy control system was designed based on experience and 
understanding of the system. All of the rules are evaluated in parallel using fuzzy 
reasoning (Figure 3). Before applying the implication method, we examined the rule's 
weight. Every rule has a weight, a number between 0 and 1, which is applied to the 
number given by the antecedent. Once proper weighting were assigned to each rule, the 
implication method was implemented. The input for the implication process is a single 
number given by the antecedent of a rule, and the output is a fuzzy set, a consequent 
represented by a membership function which is reshaped using a function associated 
with the antecedent, a single number. Implication is implemented for each rule using the 
AND method: minimum, which truncates the output fuzzy set, was used. The out of the 
implication method, mathematically is expressed as: 
 
    ∆i = WiАi   

 
where, ∆i = Implication of Rule i 

Wi  =  Weight of Rule i 
   Аi =  Area of truncated membership function 
 

3.4 Aggregation of Outputs 
 

The decisions made from fuzzy logic models are based on the testing of all of the 
rules in a fuzzy inference system. Because there many rules involved, they must be 
combined in some manner in order to make a decision and that process is called aggregation. 
Through aggregation the fuzzy sets that represent the outputs of each rule are combined 
into a single fuzzy set and they occur once for each output variable. The input of the 
aggregation process is the list of truncated output functions returned by the implication 
process for each rule and the output of the aggregation process is one fuzzy set for each 
output variable. In Figure 3, all rules have been placed together to show how the output of 
each rule is aggregated, into a single fuzzy set whose membership function assigns a 
weighting for every output value. The aggregation process is mathematically expressed as: 
 

  ∆ =  ∑∆i   
 
 where, Σ∆i = WiАi, the implication fired for Rule i. 

 
3.5 Defuzzification 

 
The input for the defuzzification process is a fuzzy set consisting of the 

aggregate output fuzzy set. The aggregate output fuzzy set encompasses a range of 
output values and so must be defuzzified in order to resolve a single output value from 
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the set. The popular defuzzification method, the centroid calculation, which returns the 
center of area under the curve, was used in this study. Mathematically, the 
defuzzification process is express as: 
 

   
Wi

iWc
∑
∆∑

=  

 
  where, Wc =  percent of wet-pavement crashes 

  ∑∆i = sum of all implications 
  ∑Wi = the implication fired for Rule i.   
 

 

FIGURE 3 
The Fuzzy Inference Diagram 

 
 

4. DATABASE CONSTRUCTION 
 

The data used in testing the fuzzy logic model this study came from the 
Department of Transportation highway crash database. The wet-pavement crashes were 
extracted along with other information such as speed of travel and class of road. Because 
the database did not include information on skid resistance and traffic volumes a proxy 
variable, road class, was used for traffic volume. It was also assumed that high-level road 
classes such as freeways and principal highways receive high priority maintenance and 
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consequently their pavements have good skid resistance. Table 1 shows the distribution of 
wet-pavement crashes from the database. Each row total in Table 1 comprises of the total 
wet pavement crashes resulting from the total combinations of skid resistance, speed 
deferential, traffic volume, and driving difficulty. It must be emphasized that certain 
combinations of the input variables are impossible for certain row totals in Table 1. From 
Table 1, it can be seen that the higher class highways have lower wet-pavement crashes, 
even though, they have higher speeds—a direct result of the high maintenance priority 
that are assigned to those classes of roads. The results also reflect exposure of each road 
class in terms of mileage and vehicles miles of travel. The observed and expected number 
of wet-pavement crashes is shown in Table 2 where a close examination shows some 
association among the wet-pavement crashes with speed and road class.  
 

5. EXPERIMENTAL DESIGN 
 

Because of the association and randomness of wet pavement crashes, it would be 
inappropriate to apply one fuzzy logic model to model the four classes of road. A separate 
model has to be developed for each road class or some kinds of factors must be used to 
extend one fuzzy logic model to the other road class. In this study, the factorization 
approach was used. The developed factors reflect exposure in terms of miles of road in 
each class of road, the relative degree of difficulty in driving on each class of road, the 
amount of traffic that use each class of road, and many others that are embedded in the 
wet-pavement crash data. Using the results in Table 1, the following conversion factors, 
presented in Table 3, were developed for each road class. With is in mind, the fuzzy logic 
model was developed and customized for freeways. Thus, the fuzzy logic model 
developed represented crashes on Freeways for which a factor of 1.0 is associated. The 
fuzzy logic model predicts wet-pavement crashes for each combination of the input 
variables. An experimental design was used to set up the input variables. Using 3 
membership functions (low, medium, and high) for each of the four input variables will 
results in 81 different cells shown in the Table 4 in the Appendix. The 81 different 
combinations cover all the conditions that can be expected for each road class. The sum of 
the wet-pavement crashes (output) in the 81 cells gives the estimate of wet-pavement 
crashes for Freeways. To estimate the total crashes for the other road classes, the 
appropriate factor is applied to the freeway estimate to convert it.  
 

6. RESULTS AND DISCUSSION 
 

The plot of the observed and expected wet-pavement crashes is shown in Figure 4. 
The observed and expected crashes do not correlate, showing randomness in 
wet-pavement accidents. Statistically, using the Chisq test statistic indicates that the crash 
data shows some kinds of associations between the observed crashes and the variables 
speed and road class. Higher-class roadways usually have lower wet-pavement crashes 
due to the high maintenance priority they receive. Exposure in terms of miles of road in 
each class of road, the relative degree of difficulty in driving on each class of road, the 
amount of traffic that use each class of road, and many others that are embedded in the 
observed wet-pavement crash data. The results of the fuzzy logic model are presented in 
Table 5 in which the predictions of the fuzzy logic model and the corresponding observed 
numbers of wet-pavement crashes are presented. The predictions have a relatively good 
correlation with the observed numbers of wet-pavement crashes. Figure 5 show the 
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surface view of the fuzzy logic model for freeways under various axes. The surface view 
provides the full spectrum of the relationships between the input variables and the output 
variable and can be used to examine the sensitivity of the model.  

 
7. CORRECTIONAL STRATEGIES 

 
One of the objectives of this research is to develop recommendations for 

efficient and effective ways of improving the safety conditions for wet-pavement 
crashes. To evaluate these correctional strategies quantitatively, a sensitivity analysis 
was carried out. To see how each input variable affects the safety of the roadway, one of 
the input variables is varied over a certain range each time, and the rest controlled. 
Through this technique, the effect of each variable can be examined and its impact on 
reducing wet-pavement crashes. It is therefore not difficult to choose an effective and 
efficient way to improve the safety condition at a location if the existing conditions are 
known. The remedial strategy could involve increasing the skid resistance, reducing 
speed to posted speed limit, decreasing the driving difficulty (information that must be 
processed by drivers during navigation)—or any combination of these.  
 
 

8. CONCLUSIONS AND RECOMMENDATIONS 
 

Modeling wet-pavement crashes is a very complex and challenging task. 
Wet-pavement crashes are caused by complex interactions among many roadway, 
vehicle, human, and environmental factors. They also occur because of random 
variables such as driver inattentiveness, misjudgment, and recklessness and other 
unexpected events, to name a few. These events are embedded in the observed number 
of wet-pavement crashes and contribute significantly to the modeling error. Because of 
these events of wet-pavement crashes, it is unlikely to expect the developed 
methodology to predict the exact number of wet-pavement crashes. However, fuzzy 
logic modeling is a promising methodology for predicting and preventing the 
occurrence of wet-pavement crashes. It can express the relationships between the input 
and output and clearly show the mechanism of occurrence of wet-pavement crashes. 
The methodology can be used to identify those road sections where wet-pavement 
crashes are high for more attention.  
 

To improve on the reliability and efficiency of the fuzzy-logic models, further 
research is necessary, such as comprehensive and extensive datasets to provide the basis 
for constructing a high-quality fuzzy logic models as well as testing and training the 
model. In addition, further research is needed on adding more functionality on top of the 
current model to improve its prediction capabilities and uses.  
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TABLE 1 
Distribution of Wet-Pavement Crashes by Speed and Road Class 

 
Speed (Km/hr)  

Road  
Class 

  ≤30   ≤60 ≤90 ≤120
 
 
Total 

 

Freeway 

0 
0 

15
0.23

89
1.36

60
0.92

164 
2.51 

 
 Principal 

24 
0.37 

948
14.51

121
1.85

0
0

1093 
16.73 

 
 Urban 

124 
1.89 

4257
65.16

29
0.44

2
0.03

4412 
67.53 

 
 Local 

72 
1.10 

783
11.99

9
0.13

0
0

864 
13.23 

 
Total 

220 
3.37 

6003
91.89

248
3.80

62
0.95

6533 
100 

 
Shown in bold italics is the percentage of crashes   

TABLE 2 
Distribution of Observed and Expected Wet-Pavement Crashes by  

Speed and Road Class 
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Speed (Km/hr)  
Road  
Class 

≤30 ≤60 ≤90  ≤120 

 
 
Total 

 

Freeway 

0 
6 

15
150

89
6

60
2

164 
 

 
Principal 

24 
36 

948
1004

121
42

0
10

1093 
 

 
Urban 

124 
149 

4257
4054

29
167

2
41

4412 
 

 
Local 

72 
29 

783
793

9
33

0
8

864 
 

 
Total 

 
220 6003 248 62

 
6533 

 
Shown in bold italics is the expected number of crashes 
 
 

TABLE 3 
Road Class Factors 

 
Road Class   Number of Crashes  Percentage         Factor 
 
Freeway     164    2.51     1.0 
Principal Highway  1093    16.73     6.6 
Urban Street   4112    67.53   26.9 
Local Street     864    13.23     5.3     
 
 
 
 
 
 
 
 
 
APPENDIX 

TABLE 4 
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Results of the Fuzzy Logic Model for Freeways 
 
 
Numbe
r 

Skid 
Resistance 

Speed 
Differential 

Traffic 
Volume 
(x1000) 

Driving 
Difficulty 

Number of Wet 
Pavement 
Crashes 

1 30 5 30 2 2.72 
2 30 5 30 3 2.64 
3 30 5 30 5 2.64 
4 30 5 60 2 2.72 
5 30 5 60 3 2.72 
6 30 5 60 5 2.80 
7 30 5 80 2 2.72 
8 30 5 80 3 2.72 
9 30 5 80 5 2.80 
10 30 10 30 2 2.64 
11 30 10 30 3 2.64 
12 30 10 30 5 2.64 
13 30 10 60 2 2.72 
14 30 10 60 3 2.96 
15 30 10 60 5 3.12 
16 30 10 80 2 2.92 
17 30 10 80 3 3.04 
18 30 10 80 5 3.12 
19 30 20 30 2 2.64 
20 30 20 30 3 2.64 
21 30 20 30 5 2.64 
22 30 20 60 2 2.80 
23 30 20 60 3 3.12 
24 30 20 60 5 3.20 
25 30 20 80 2 2.80 
26 30 20 80 3 3.12 
27 30 20 80 5 3.28 
28 40 5 30 2 2.32 
29 40 5 30 3 2.40 
30 40 5 30 5 2.48 
31 40 5 60 2 2.48 
32 40 5 60 3 2.48 
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33 40 5 60 5 2.80 
34 40 5 80 2 2.48 
35 40 5 80 3 2.56 
36 40 5 80 5 2.72 
37 40 10 30 2 2.30 
38 40 10 30 3 2.32 
39 40 10 30 5 2.48 
40 40 10 60 2 2.48 
41 40 10 60 3 2.64 
42 40 10 60 5 2.88 
43 40 10 80 2 2.56 
44 40 10 80 3 2.80 
45 40 10 80 5 2.88 
46 40 20 30 2 2.40 
47 40 20 30 3 2.48 
48 40 20 30 5 2.48 
49 40 20 60 2 2.64 
50 40 20 60 3 2.96 
51 40 20 60 5 2.96 
52 40 20 80 2 2.64 
53 40 20 80 3 2.96 
54 40 20 80 5 2.96 
55 60 5 30 2 0.64 
56 60 5 30 3 0.72 
57 60 5 30 5 0.8 
58 60 5 60 2 0.72 
59 60 5 60 3 0.72 
60 60 5 60 5 0.88 
61 60 5 80 2 0.8 
62 60 5 80 3 0.8 
63 60 5 80 5 0.88 
64 60 10 30 2 0.64 
65 60 10 30 3 0.64 
66 60 10 30 5 0.8 
67 60 10 60 2 0.72 
68 60 10 60 3 0.8 
69 60 10 60 5 0.88 
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70 60 10 80 2 0.8 
71 60 10 80 3 0.8 
72 60 10 80 5 0.88 
73 60 20 30 2 0.8 
74 60 20 30 3 0.8 
75 60 20 30 5 0.8 
76 60 20 60 2 0.8 
77 60 20 60 3 0.64 
78 60 20 60 5 0.8 
79 60 20 80 2 0.8 
80 60 20 80 3 0.8 
81 60 20 80 5 0.8 
 
 

   TOTAL 168.02 

 
TABLE 5 

Results of the Fuzzy Logic Model 
 

Observed Number of  Predicted Number of 
Road Class   Wet-Pavement Crashes Wet-Pavement Crashes 

 
Freeway          164       168 
Principal Highway   1093     1108 
Urban Street    4112     4519 

Local Street       864      890       
Total     6554     6685       
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FIGURE 4 
Observed and Expected Number of Wet-Pavement Crashes 

 
 

 
 

FIGURE 5 
The Surface Viewer of Wet-Pavement Crash Fuzzy Logic Model 
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