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Vehicles Detection Using Background Differencing Method
Incorporated with Fuzzy Neural Network
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ABSTRACT

This paper develops a fuzzy neural network (FNN) color image vehicular detection (CIVD) system.
Background differencing method is used to process the color-based traffic flow images. A four-layer fuzzy
neural network is constructed and its network parameters are trained by backpropagation algorithm. Analog
color traffic scenes from different roads with various lighting conditions are collected by a video camera and
then converted into digital images in order to be processed by the computer. Pseudo detectors with three-, five-
and seven-points are aligned on the monitor and their detection accuracy rates are compared. The experimental
results show that detection “success” rates for this FNN CIVD system with seven detection points under various
testing environments can reach 90% or even higher.

Key Words: Color Image Vehicular Detection (CIVD), Fuzzy Neural Network (FNN), Background Differencing
Method

1. Introduction

Advanced traffic control and management relies heavily on automatic detection on traffic flow data. In
recent years, more and more traffic parameters have been automatically collected by image detectors rather than
by conventional techniques such as loop and magnetic detectors. The major drawbacks for the conventional
detectors are their limitations on measuring such important parameters as traffic composition, and on assessing
traffic conditions accurately. Other drawbacks may include small detection zone and placement without
flexibility (Michalopulos, 1991). Besides, data collected by the conventional vehicular detectors cannot be
applied in other areas including vehicle tracking, incident detection (Washburn and Nihan, 1999), and
monitoring the movement of vehicles within a junction (Fathy and Siyal, 1995).

Traffic detection through image processing may improve the drawbacks mentioned above. Recently,
extensive research and development efforts have been devoted to image processing techniques applied in traffic
data collection and analysis (Hoose, 1992). More traffic parameters including vehicle classification and tracking
and the related applications such as incident detection can be obtained through image processing detection. With
the support of such languages as C++, Delphi and Visual Basic, the image processing detection has become
more easily and friendly in facilitating the users to change the detection algorithms and interfaces.
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Methods of applying image processing on vehicular detection include blob detection, pattern recognition
and background differencing. Blob detection does not work well on rainy conditions because not all the vehicles
are brighter or darker than the measured background road surface (Blosseville, et al., 1989). Pattern recognition
neither works very well when vehicles in the detection zone are not well suited into the defined templates
(Dickson and Wan, 1989). In addition, both blob detection and pattern recognition methods often need more
computation time to detect vehicles than the most common and simple approach used in traffic image detection -
- background differencing technique (Fathy and Siyal, 1995).

Background differencing technique is based on pixel-by-pixel comparison of a background frame and the
instantaneous frame of the traffic scenes (Dickinson and Waterfall, 1984a,b). Because it is sensitive to ambient
lighting, this method tends to have successful detection in the daytime with fair weather. It may lose detection
accuracy near dusk and dawn or in bad weather conditions. Most previous image processing researches are based
on gray-level. A color-level image is consisted of red (R), green (G) and blue (B) pixels; thus it provides more
information than a gray-level image. A fuzzy neural network (FNN) is characterized with learning ability and
capabilities of dealing with uncertainties (Chiou and Lan, 1997), thus it may help to solve the variations of
ambient lightings near dusk and dawn or in bad weather conditions. In other words, a color-based image
processing through background differencing method incorporated with FNN seems promising to accommodate
more environmental changes than the same color-based image processing without incorporating with FNN. For
this reason, the main purpose of this paper is to develop a FNN CIVD detection system. Vehicular detection
procedures containing four modules are to be explained. A four-layer fuzzy neural network is then constructed.
Traffic scenes under various environments will be taken from the fields and then tested off-line to train the
network parameters as well as to validate the detection accuracy.

2. System Design

The FNN CIVD system mainly contains four modules -- image digitalization, pseudo line detectors
allocation, fuzzy neural network (FNN), and vehicle detection as depicted in Fig. 1. Analog traffic scenes are
first digitalized by the image grabber, a pseudo line detector consist of appropriate number of detection points is
then placed across a specific traffic lane on the monitor. The differencing of each pixel value (R, G, B) on each
pseudo detection point between instantaneous traffic and background images is calculated through FNN model.
If the differencing value is greater than a specific trained threshold value, it will be identified as a vehicle
passing. The four modules in this detection system are explained in-depth as follows:
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Fig. 1 Vehicular detection procedure
2.1 Image Digitalization Module

The function of this module is to convert analog images by an image grabber into digital images. After
digitalization, video images can then be seen on the monitor and processed by the computer.



2.2 Pseudo Line Detector Module

The module is to define the coordinates of both ends of a pseudo line detector on the monitor. A pseudo
line is in effect constituted by several detection points, which act as the instrument for vehicular detection. When
creating a pseudo line detector, the right and left coordinates are directly input on the interactive window. While
traffic flow video images are played, each detection point will automatically read R, G, B pixel values for the
background image at the first one-tenth second. After that, each point will then read R, G, B pixel values for the
traffic images every one-tenth second. The difference of pixel values for background and traffic images is used
as the input data of fuzzy neural network module.

2.3 Fuzzy Neural Network Module

This module is to construct and train a fuzzy neural network. A training set, collected by the pseudo line
detector module, is composed of 1000 to 1800 training examples. Each training example consists an input vector
(differences of pixel values) and output vector (binary values indicating vehicle passing information). Fig. 2 is
the training interface through which one can input desired network parameters. To generate training examples,
one has to play the video traffic scene and then press the button “vehicle passing?” at the moment that one see a
vehicle entering the pseudo line detector and press the same button again as it leaves the detector. Repeat such
actions until a satisfactory number of training examples are obtained. Table 1 illustrates a training set with six
training examples. R, G, B; (i=1~7) are obtained by subtracting the pixel values of traffic scenes from the
background every one-tenth second. Examples 1 through 3 with Veh = 0 represent no vehicle passing; while 4
through 6 with Veh = | indicate a vehicle passing,.

Fig. 2 Interface for network trélining

Table 1 An illustration of training set

Ne Ry G B, R, G, B Ry Gy By Ry Gy Bs Rs Gs Bs R G¢ Bs R; G; B; Veh
1 0 4 9 0 0 0 0 4 9 0 0 0 0 0 0 0 O 0 0 9 0
2 0 4 0 0O 4 0 O 4 9 0 O 0O 0 0 0 0 4 0 0 9 0
3 0 4 9 0 4 0 O 4 9 0 0 0 O 4 0 0 4 8 0 0 9 0
4 140 138 49 148 138 50 140 130 41 148 130 42 132 8 25 8 12 41 8 8 17 1
5 25 36 83 16 57 82 15 B8l 116 8 69 99 33 12 24 8 16 25 16 8 17 1

140 106 16 148 98 9 124 78 8 41 0 49 16 24 33 17 16 16 16 12 25 1

[=,]

Background pixel values may change over time as well as under different lighting conditions. Each lighting
condition requires a specific trainings set; therefore, different fuzzy neural network must be trained under
different lighting conditions (daytime or nighttime, rainy or clear, etc). Appropriate network parameters can be
obtained through back propagation algorithm, which will be explained in the following section. With such
trained parameters, one can further develop the vehicle detection system,



2.4 Vehicular Detection Module

This module is to determine whether there is a vehicle passing the pseudo line detector. Fig. 3 shows an
example of vehicular detection interface through which the users can select appropriate environments and
lighting conditions. As one moves the cursor to any position within the traffic scene, this module will
automatically show the exact X and Y coordinates as well as the corresponding instantaneous traffic image pixel
(R, G, B) values.

%

Fi g .I Interface or vehicular tl mu]e .
3. Network Construction

In this study, a four-layers fuzzy neural network with q detecting points is constructed as shown in Fig. 4.
The first layer, named input layer, receives the differencing of pixel values from pseudo detection points
between instantaneous and background images and transmits these values to the second layer. The second layer,
named membership layer, computes membership degree of each input value. The third layer is called rule layer.
It connects the related links between the membership and rule nodes and calculates the weighted averages (R, G,
B) of rule nodes. The fourth layer is output layer. It performs defuzzification to get numerical output value. Back
propagation algorithm is employed to train the network parameters. The layer operation and training algorithm
are further elaborated as follows.

3.1 Layers operation -
(1) Input layer
o,! = f(u'-' Y= xi-' for i=l~r (r=3q, where q is the number of pseudo detection points)

Since the weights (w: ) at layer one are set equal to unity, both output (a'! ) and input (x:) values at this
layer can be further expressed as:

0; =uU; =X;
where
u = w}x

0,-l = the output value (differencing of pixel values) of i node at layer one.
xl.1 = the input value (differencing of pixel values) of i"™ input value at layer one

1 % i
w; = connection weight at layer one
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Fig. 4 A fuzzy neural network with q detection points

(2) Membership layer

The second layer in the network is the membership layer. The main function for this layer is to fuzzify the
output values from layer one (o] =u] =x]) by utilizing membership function and to decide membership

degrees of input variables. The number of nodes in this layer is the same as that in layer one. Trapezoidal
membership function as shown in Fig. 5 is utilized because its shape can correspond to the situations whether

there exists a vehicle. A differencing of pixel values (x?) less or equal to the threshold value (a) implies no

vehicle passing over the detector. If xf is greater than the other threshold value (b), a vehicle is judged as

passing over the detector. For the case of a< xj <b, the corresponding membership degree is calculated and

then a training algorithm is employed to identify whether there exists a vehicle. The illustrated trapezoidal
membership function in Fig. 5 can be expressed mathematically as follows:

Membership 4
degree(,‘.tj)
1 i
0 a »_ Differencing of pixel

values(x;))
Fig. 5 Trapezoidal membership function



0f = f;i)=p;(x})

2 2
¢ Zq”
0 for xj saj
x2 - g2 for i=l~r1, j=1~s
N J 2 2 2
= for a; <x% <b?
32 o2 i J j
J J
1 for ch>bjg
where

2_ “th
0; = the output value of j node at layer two

x?= the input value of j" node at layer two

af = parameter of trapezoidal membership function

b}z_ = parameter of trapezoidal membership function

(3) Rule layer

Rule layer, the third layer, connects the related links between the membership and rule nodes such that
antecedent matching is determined. Its primary function is to establish various kinds of fuzzy inference rules to
obtain the reasonable output. The nodes at this layer will perform a summation operation as follows.

&
0f = f(u})= Z Wﬁk Xy for j=l~s, k=l~v
j=1

The term (x}k ) can be derived from the rule layer input value (x ; ) multiplied by a fixed value for the j"

detection node (z;). W j‘ represents the connection weight between k™ rule node and j™ membership node.

w

& 1s setequal to unity for all j and k. ai’ represents the output value of k™ node at layer three.

Since each detection point consists of R, G, B nodes, a pseudo line detector with q detection points will
have 3q nodes. In this paper, q=3, 5, 7 will be experimented on a single traffic lane. To avoid the situation that
any lane-changing vehicle taking very small lane space is counted in the designated detection lane, the fixed
values on the detection nodes are set unequally in such a way that the values for the middle detection nodes are
larger than those for both end detection nodes. Table 2 presents an example of the fixed values distribution over
the detection nodes, which are to be used in this study.

Table 2 An example of fixed values distribution

Number of Number of nodes | Fixed value Nodes (j)
detection points at layer two (Z))

3 9 0.25 1,2,3,7,8,9
0.5 4,56
0.1 1,2,3,13,14,15

5 15 0.2 4,5,6,10,11,12
0.5 7.8,9
0.05 1,2,3,19,20,21

7 71 0.1 4,5,6,16,17,18
0.2 7,8,9,13,14,15
0.3 10.11.12

The case of seven detection points is explained as follows. Since nodes 1, 4, 7, 10, 13, 16, 19 in layer two
will be aggregated into node 1 (R®) of layer three, R can then be expressed as:

R* =Y wh-xj for j=1,4,7,10,13,16,19
g

Similarly, G3 and B3 can be expressed as:



G*=) wh-x), for j=2,5,8,11,14,17,20
i :

B*=Y whxjy for j=3,6,9,12,15,18,21
f

(4) Output layer
This layer performs the defuzzification to obtain numerical outputs by utilizing the center average

defuzzifier. The connection weight W;f" between k™ rule and m® output node represents the consequence fuzzy

singleton. The variables (R’, G*, B’) computed by the network produce a binary output value -- “0” representing
no vehicle passing and “1” indicating a vehicle passing. At this layer, the node operation is expressed as follows.

w
4 4 4 4
Om:f(“m)=Zka'xk,, for m=1
k=1

The connection weights ( W,‘f,, ) are to be adjusted by the supervised training algorithm that is explained as
follows.

3.2 Training Algorithm

Step (1) Set network parameters( @, a, b)

Learning rate=1- 2
N

Learning rate ( 77 ) would decrease as the number of training cycles (n) increases. N represents the number
of current training epochs. Initially, the network parameters, including momentum parameter (@ ), aj, b; are set
equal to 0.8, 20, 35, respectively.

Step (2) Input a training example and compute the network output

A training example is composed of an input vector (differences of pixel values) and output vector (binary
values indicating vehicle passing information). The output values at each layer are calculated as follows:

Layerl:o; =x;  fori=l~r

Layer2:
2 2y _ 2
ojzfj(uj)_ﬂj(xj)
2 2
0 for x; <aj
2 2 for i= i
X:—a; or i=l~r, j=1~s
= '; A for aj <x§ Sbf
B gt
J J
1 for xi>b]

5
Layer3:0; =f(uf) :Zwi& -xy for j=les k=l~v
Jj=l

Layer4: o:, = Z Wi Xp, form=l
k=1

Step (3) Employ a network output and desired output to get &, :, of output layer

Sa(t)=dp(t) -0, (1)



Step (4) Renew connection weight w;, between rule layer and output layer
4 ! 4 4 4
Wi { + D) =W, () + 1 -8, () - Xp () + @ Awy,, (1)
Step (5) Compute propagated error signal & ,f of rule layer
8y =8, Wiy
Step (6) Compute propagated error signal 6'f. of membership layer
2 3

Step (7) Renew the adjusted parameters of membership layer

2 b2
G 2
3 +aha; (1)

a2t +)=a(t)+n-6, —L—L_
4 4 J (b}—af)

2 2
a. —x;

bi(t+1)=bl(t)+n- 8} - ———— +ahb} (1)
(b},-— j)

Step (8) Repeat step2 to step7

In this step, a total error square value is calculated. Repeat step 2 to step 7 until all training examples are
finished (called an epoch). In each epoch, the energy function (TE) is calculated by

l T
TE, == (d,(1)-0,(1)
25
where d(t) is the desired output for the t* training example and on(t) is the output of t” training example in
FNN.

Step (9) Test if the stop condition satisfies

Stop condition can be a predetermined fixed number of training cycles or the energy function converges; i.e.
IT E,-TE n—ll < g. If the TE value decreases smoothly, a stop condition is reached. Otherwise, go to step 2.

4. Experiments

4.1 Data collection and evaluation criteria

A digital video camera is set up on a pedestrian or grade overpass to take the roadway upstream and
downstream traffic scenes. The camera’s field view is set as vertical to the road as possible in order to reduce
vehicular occlusion situations. When videotaping traffic scenes in the daytime, a downstream viewing is taken;
while in the nighttime, both upstream and downstream viewings are taken so that the effects of vehicle
headlights and taillights on the detection accuracy can be compared.

Off-line experimental tests are conducted. Fuzzy neural network parameters are first trained to
accommodate various lighting conditions. The trained network is then employed to detect the traffic flows.
Pseudo line detectors with three-, five- and seven-detection points are equally spaced across a specific traffic
lane on the monitor and their corresponding detection performances are compared.

The detection outcomes are classified into success, missing, and false. A “success” is referred as the
situation that a vehicle is detected when that vehicle actually passes over the pseudo line detector. A “missing” is
counted when no vehicle is detected but a vehicle in effect passes over the detector. A “false” is identified when
a vehicle is detected but in fact no vehicle does exist. The detection accuracy is evaluated by these three criteria.
In this paper, traffic on a specific lane is detected. Thus, a lane-changing vehicle that may takes a small portion
of the lane width will not be counted as a success outcome. Both freeway mainline and urban street are the



experimental fields. Videotaping hours are from 3 pm to 4 pm and from 6 pm to 7 pm. Detection performance in
different times and locations are compared in the following subsections.

4.2 Freeway

The study location is at the Hsin-Chu mainline section of Freeway No.l with three lanes southbound and
four lanes northbound. Traffic scenes were videotaped on December 5, 2000 in good weather condition.

Training examples under different lighting conditions associated with various detection points are collected
for network training. Table 3 presents the number of training examples and the converged epochs corresponding
to the error values for different situations. For example, in nighttime downstream viewing with seven detection
points, the number of training examples is 1195 and the energy function value is converged at about 600" epoch
with an error value of 119. Fig. 6 shows the evolution of this network-learning process where X-axis represents
the number of training epochs and Y-axis is the energy function value, or the error value (TE).

Table 3 Network training on freeway mainline

Videotaping time Detection points | Training examples | Training epochs | Error value

Daytime 3 1040 3800 84

(clear) 5 1040 700 105

7 1040 700 38

;g 3 1120 2800 30

7 1120 400 37

s 3 1195 3200 85
Nighttime

s 5 1195 900 111

(downstream viewing) - 1195 600 119

3000

2500

2000

1500 +

TE value

1000 +

500

1 101 201 301 401 501 601 701 801 901

epoch

Fig. 6 Training process in freeway (nighttime downstream viewing with seven detection points)

Table 4 presents the detection performance in freeway. Under various lighting conditions
combined with different numbers of detection points, in general, the detection performance in the
daytime is the best. The performances of five and seven detection points are better than those of three
points. Notice that the difference of detection “success” between five and seven detection points is
insignificant. For the cases of detection failures, “missing” often occurs in upstream viewing while
“false” often happens in downstream viewing. The main reason for detection failure in the daytime is
due to the resemblance between the color pixels of some vehicles and the road background. Most of
those vehicles are gray or near gray. The second reason is the lane-changing vehicles, which are not
counted in this detection system.

The high missing rate in the nighttime upstream viewing is due to too high a threshold value set in
the FNN system. In the nighttime, a vehicle is identified when both headlights are simultaneously
detected by the pseudo line detector. If only one headlight is detected (lane-changing in most cases),
then that vehicle will not be counted in this detection system. In contrast, the high false rate in the



nighttime downstream viewing can be ascribed to too low a threshold value being set. Lane changing
vehicles are mostly seen in this case.

Table 4 Freeway detection performance

Detection Daytime Nighttime Nighttime
performance (clear) (upstream viewing) |(downstream viewing)
Number of vehicles passed 220 119 196
3 detection 198 106 186
points (86.8%) (84.8%) (85.3%)
Stidess 5 detection 210 111 190
points (92.5%) (88.8%) (90.0%)
7 detection 212 113 188
points (92.9%) (90.2%) (89.9%)
3 detection 22 13 10
points (9.6%) (10.4%) (4.5%)
o 5 detection 10 18 6
Missing points (5.2%) (4.5%) (2.8%)
7 detection 8 6 8
points (3.5%) (4.0%) (3.8%)
3 detection 8 6 22
_points (3.6%) (4.8%) (10.9%)
False 5 dett_aciion 7 5 15
points (3.8%) (2.2%) (7.1%)
7 detection 8 4 13
_points (3.5%) (1.8%) (6.2%)

4.3 Urban street

The study location is at section | of Chunghwa Road, Taipei City, with four lanes northbound and
five lanes southbound. Traffic scenes were videotaped on December 7, 2000 with fair weather from

clear to cloudy.

Training examples are collected for network training. Table S illustrates the training conditions in
the daytime and nighttime. For instance, in the daytime (cloudy) with five detection points, the number
of training examples is 1280 and the energy function value converges at around 770" epoch with an
error value of 85. Fig. 7 shows such a network-learning process.

Table 5 Network training on urban street

Videotaping time Detection points | Training examples | Training epochs | Error value
Dagitiiié 3 860 900 54
(clear) 5 860 400 53
7 860 900 58
Dy 3 1280 3000 59
(cloudy) 5 1280 770 85
7 1280 400 16
s % i 3 1600 900 7
(upst?ﬂag;n\]»'?:ving) 3 1600 150 =
7 1600 850 17
— 3 1040 2000 83

Nighttime

(downstream viewing) 2 L 1320 o)
7 1040 400 38
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Fig. 7 Training process in urban street (daytime cloudy with five pseudo detection points)

Table 6 summarizes the detection performance. Except for three detection points, the detection
performances in the daytime with five and seven detection points are the best under various conditions.
Generally, the performance of five- and seven-points is better than that of three-points. Also notice that
the difference of detection performance between five- and seven-points is slight. Reasons for the
detection “missing” and “false” under different times of days with various weather conditions are the
same as those mentioned in the freeway case.

Table 6 Urban street detection performance

Detection Daytime Daytime iﬁf:tg ::: (g)tf::;r::m
performance (clear) (cloudy) S o<
viewing) viewing)
Number of vehicles passed 153 114 96 144
3 detection 135 100 84 130
points (83.8%) (85.4%) (82.3%) (83.3%)
Success 5 detection 144 103 88 137
points (90.5%) (90.0%) (89.7%) (90.8%)
7 detection 148 106 87 135
points (93.1%) (89.8%) (87.8%) (89.4%)
3 detection 18 14 12 14
points (11.1%) (11.9%) (11.8%) (8.9%)
Missing 5 detection 9 11 8 7
points (5.6%) (10.0%) (8.2%) (4.6%)
7 detection 5 8 9 9
points (3.1%) (6.7%) (9.1%) (5.9%)
3 detection 8 3 6 12
points (5.1%) (2.7%) (5.9%) (7.8%)
False 5 detection 6 3 2 8
points (3.7%) (2.5%) (2.1%) (5.1%)
7 detection 6 4 3 7
points (3.7%) (3.4%) (3.1%) (4.6%)

5. Concluding Remarks

In this study, a color image vehicular detection system incorporating with fuzzy neural network is
developed. Three-, five- and seven-points pseudo line detectors are placed on a single traffic lane to
compare the detection accuracy in various conditions. The conclusions of this study are summarized as
follows.

In the freeway, the detection performance in the daytime is better than that in the nighttime. While
in urban streets, expect for three detection points, daytime detection performance is better than that of
nighttime. Generally, the detection performances for five and seven points are better than those for
three points in various lighting conditions. The difference of detection accuracy between five and seven
detection points is small.

The main reason for detection failure in the daytime is due to resemblance of the color pixels
between vehicles and road backgrounds. The second reason is the lane-changing vehicles, which is not



counted in this detection system. In the nighttime, “missing” often occurs in upstream viewing while
“false” often happens in downstream viewing. The high missing rate in the nighttime upstream viewing
is due to high threshold value set in the FNN system. The high false rate in nighttime downstream
viewing, on the other hand, is due to low threshold value.

This paper has dealt with single lane traffic detection. Of course, the FNN CIVD system can also
detect the traffic scenes by placing a pseudo line detector on the monitor across the whole road section
with multiple lanes. For multiple-lanes traffic detection, one must define a rule to assign any lane-
changing vehicle to a specific lane to avoid missing or double counting. In future works, more traffic
parameters such as vehicle length (classification), headways and speeds can be measured by allocating
tandem pseudo line detectors. Last but not the least, this paper has constructed four-layers fuzzy neural
network systems and tested three-, five- and seven-points of pseudo line detectors. Different types of
FNN structures may further be explored and more detection points can also be experimented.
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