## 高速公路隧道群(區)車流及行車事故特性分析

## 簡俊能1 王銘亨2 兵界力3

- 1. 國道公路警察局第六警察隊隊長
- 2. 中央警察大學交通學系助教
- 3. 中央警察大學交通管理研究所研究生

## 摘要

北部第二高速公路(國道三號公路)自八十六年八月起,配合中和至木柵間的 隧道群完工通車後,成為大台北地區對外連絡的另一主要交通動脈之一,車流量 亦隨之大幅成長;然由於此一路段均以穿越山區為主,因此公路隧道數量相當的 多且集中,道路幾何(如匝道區位)設計限於地形的因素而更為複雜,部分的交通 管制設施亦較為嚴苛,形成一特殊的公路隧道群(區)行車路段,行車事故的型態 及肇事率亦此因一特殊行車路段而與一般高速公路段迴異。本文即針對高速公路 隧道群(區)路段特殊的道路型態,對於車流所產生的變化及對行車安全的影響情 形,進行分析與探討。

## 壹、前言

台灣地區中山高速公路自民國 64 年部分路段通車以來,即使民眾享受到與以往不同的駕駛之經驗,如便利性、舒適性、安全性等,至民國 67 年全線通車,成為台灣地區之交通動脈。其中,以往中山高速公路,僅以北端近基隆段部分,具有隧道路段,北上路段稱為中興隧道,南下稱為大業隧道。由於主管單位並未對此一路段隧道作特殊之管理工作及管制措施,加上此一路段臨近基隆市區,上下午尖峰及日間時段均易擁塞,故高速公路隧道路段之車流特性並未顯明。

北部第二高速公路(國道三號公路),北起基隆,南至新竹香山,目前通車路段為汐止系統交流道至香山交流道,基隆至汐止系統交流道路段長約 10 公里,目前仍在施工當中。北端汐止系統交流道及南端新竹系統交流道與中山高速公路街接,鶯歌系統交流道連接國道二號公路,可通往中山高機場系統交流道並通往中正國際機場,另外國道三號甲線(台北聯絡道)係連繫木柵交流道至台北市區辛亥路。自民國82年部分路段陸續通車以來,已逐漸成為北部另一交通重要道路;86年8月起,木柵至中和路段間的隧道群完成後,全線通車,由於此一路段隧道數量相當多且集中,加上道路幾何型態的變化及隧道內特有的行車管制措施,形成一特殊的公路隧道群行車路段。因此,本文擬以北部第二高速公路(汐止系統交流道至土城交流道)為例,針對現有公路隧道的分佈及鄰近道路幾何狀況進行探討,定義並劃分為數個隧道群(區)組,再依臨近隧道群(區)、隧道內的車流狀況及速率變化進行分析,了解其間車流變化的情形及差異,並蒐集近一年來(87

年 1 月~87 年 12 月)行車事故資料,分析隧道群(區)路段行車事故的型態及分佈情形,藉以了解隧道群的幾何配置及相關管制措施對車流特性化、行車事故的影響及其適用性與缺失,作為幾何配置、管制設施設改善及執勤警力規劃的依據。

## 貳、隧道幾何特性分析及交通管制策略

為期能了解北二高隧道群路段之特性,對於隧道環境、隧道幾何及相關交通管制措施簡要說明如下:

## 一、隧道群地點、位置、長度之簡介

北二高隧道群位於國道三號公路 18 公里至 36 公里處,亦是在木柵至中和交流道之間路段,計有福德、木柵、景美、新店、碧潭、安坑、中和等隧道,另外台北聯絡道(國道三號甲線),有台北 I 及台北 II 隧道,大溪路段 59 公里至 61 公里亦有埔頂隧道,係屬假性隧道。其相關位置情形,如圖 1 所示。

各隧道之起迄點里程、長度及隧道內車道數等資料彙整,如表1所示。

由圖 1 及表 1 所示,我們可以發現部分隧道位置,如福德、木柵、景美等三座隧道,新店、碧潭二座隧道,安坑、中和二座隧道,台北 I、台北Ⅱ二座隧道等均非常接近,所形成之特殊行車環境,有別於一般高速公路。

表1 國道三號高速公路隧道長度一覽表

| 隧道名稱  | 起點里程     | 終點里程     | 長度     | 車道數/單向      |
|-------|----------|----------|--------|-------------|
| 福德    | 18K+185M | 19K+994M | 1809公尺 | 三車道         |
| 木柵    | 21K+964M | 23K+840M | 1876公尺 | 三車道         |
| 景美    | 24K+015M | 24K+592M | 577公尺  | 三車道         |
| 新店    | 27K+071M | 28K+328M | 1257公尺 | 三車道         |
| 碧潭    | 28K+442M | 29K+004M | 562公尺  | 三車道         |
| 安坑    | 32K+635M | 33K+108M | 473公尺  | 三車道         |
| 中和    | 34K+228M | 35K+095M | 867公尺  | 三車道         |
| 台北 I  | 2K+008M  | 2K+826M  | 818公尺  | 二車道         |
| 台北Ⅱ   | 0K+682M  | 0K+897M  | 215公尺  | 二車道         |
| 大溪埔頂I | 59K+510M | 60K+065M | 555公尺  | 南向四車道、北向三車道 |
| 大溪埔頂Ⅱ | 60K+300M | 60K+660M | 330公尺  | 南向四車道、北向三車道 |

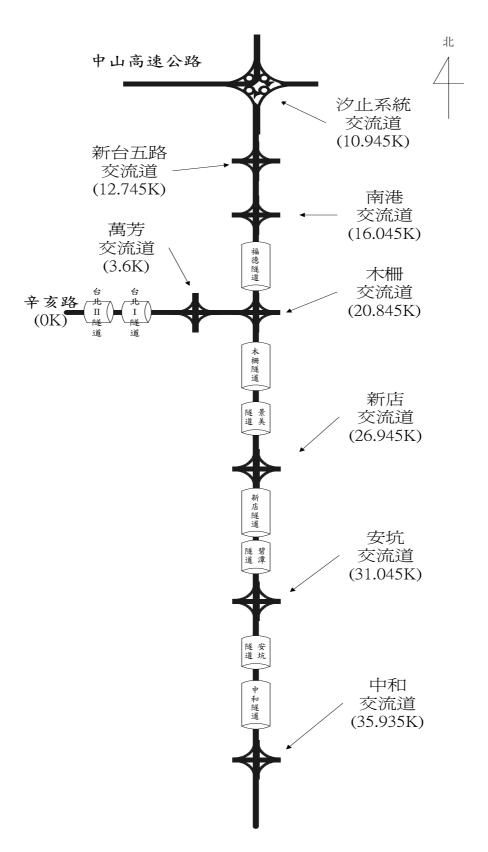



圖 1 北二高隧道群示意圖

另針對(1)南下福德隧道南口距木柵交流道出口匝道 529 公尺,(2)北上木柵隧道北口距木柵交流道出口匝道 819 公尺,(3)北上新店隧道北口距新店交流道出口匝道 302 公尺,(4)新店交流道南下入口之加速車道亦位於新店隧道內,(5)台北 II 隧道西口亦緊臨辛亥路等,特殊的隧道與匝道幾何設計,影響駕駛行為及車流特性變異較大的路段,亦須做深入的探討。

### 二、隧道環境特性

隧道內部因其通風、照明、幾何條件等特性與一般路段有明顯差異,致駕駛行為亦有差異,因而車輛行駛於隧道內與非隧道路段之車流現象會有所不同,茲將隧道環境特性說明如下[1]:

### 1.幾何特性:

隧道內一般考慮興建之成本,因此其行駛空間較小,會對駕駛人造成心理 之影響,同時也會影響事故處理之可及性,增加救援之困難。隧道之幾何設 計與一般路段最主要之差異有側向淨寬及隧道淨高,隧道之側向淨寬扣除行 人步道後亦無路局,此除了將影響駕駛行為、道路容量外,亦將影響事故之 處理相關車輛之通行;在一般路段雖有高度限制但不會影響事故時車輛翻覆 之起重作業,但隧道內之高度限制則會影響事故處理之時效。此外,隧道內 之單調景觀、視野使得駕駛人容易疲勞,增加筆事之機率,尤其是在長隧道。

## 2 照明:

隧道為一封閉空間,光線無法進入,因此須有照明設備,以維護行車安全, 尤其白天車輛由輝度較高的地區進入近似黑暗的隧道內,由輝度的變化過份 激烈故駕駛人的眼睛可能無法立即適應來辨識隧道內的情形,此即所謂的黑 洞現象或視覺適應性發生遲延的眩光消除現象。一般隧道內之照明系統將隧 道分成隧道入口區、漸變區取及一般區段三區,隧道入口區照明係配合隧道 外光線強弱變化予以設計,以使隧道內外之亮度差異不致太大,影響行安全; 漸變區段則將亮度逐漸降低至一般區段之所需之亮度。在危險事故如火災 等,則可藉由隧道照明全亮及逃生指示燈之引導進行人員疏散逃生。

#### 3. 通風:

隧道路段車輛所排放之廢氣並無法如一般路段直接擴散於大氣之中,必須藉由通風系統將污染物排出隧道外,駕駛人才能有較佳之空氣品質及視線。隧道中車輛所排放之污染物主要包括懸浮微粒、一氧化碳、二氧化碳、碳化氫、氮氧化物、鉛及二氧化硫等。其中懸浮微粒累積濃度若太高會影響駕駛人視線,而影響行車安全;而一般一氧化碳濃度超過一定值時,駕駛人吸入之一氧化碳會破壞血液中紅血球輸氧之能力,引起反應遲鈍、緊張等症狀,因此,須經由通風系統,將前述污染物之濃度降至不影響行車安全之程度。此外,隧道內事故,如擁塞、交通事故、火災等所造成污染物濃度過高或濃湮,亦須藉由通風系統之功能來降低其危險性。

#### 4.其他設施:

隧道除本體之土木建築結構外,必須輔以完善自動監測控制之隧道機電系統,除上所述照明及通風設備外,另有電力、火警偵測、消防、監控等相關機電設施。隧道內亦有橫坑連繫對向車道,以供隧道內發生緊急事件或事故時,供車輛疏散或用路人逃生。

## 三、交通控制及管制設施

國道三號公路次控中心設於木柵工務段內,目前在其系統內之交通控制設施計有:1.資訊可變標誌(CMS),2.圖誌可變標誌(CGS),3.車道管制號誌(LCS),4.速限可變標誌(CSLS),5.匝道儀控號誌(RMS),6.閉路電視攝影機(CCTV),7.車輛偵測器(VD),8.緊急電話(ET),9.氣候偵測器、坍方偵測器等;另外標線、標誌、號誌之設置,均依其路段特性所需設置之。

## 四、隧道群之管制策略

## 1.隧道內禁止變換車道:

由於隧道內受地形之限制,大多無路肩之設置,一旦發生行車事故,若無法立即有效排除,勢必影響主線車道之進行。一般除有行車速度之限制外,另亦限制車輛變換車道之行為,因此在隧道內均畫設禁止變換車道線(雙白實線),以期能降低在隧道內因變換車道不當而發生之事故。另外在部分隧道出口處,由於緊臨交流道匝道,因此於該路段亦畫設允許單邊變換車道之單虛單實白線。但由於國人普遍對於標線、標誌之漠視,需藉由強力執法乃為最有效之宣導,在87年全年計取締在隧道內任意變換車道之違規件數高達11,951件[6],可見用路人行駛隧道路段,與其他行駛一般路段之心態、習性並未做適當調整,而易忽略潛在之危險。

#### 2.禁行戴運危險物品車輛:

各國鑑於隧道內發生危險物品事故將會引起重大危害,故在研擬危險物品運送車輛行駛隧道區之管制規則時,均一致主張應予以通行之管制。一旦於隧道內發生運送危險物品之事故,而有洩漏、爆炸、火災等危害,由於隧道係一封閉空間,除緊急救援不易,對於在隧道內用路人之生命、財物造成重大損失外,另隧道本身特殊結構、硬體損壞之修復,將耗費時日甚至無法修復。為斷絕災害發生之可能性,因此以完全禁止之手段來限制載運危險物品車輛行駛隧道群路段。我國亦有相關規定,於北二高大溪以北路段(含台北聯絡道,共約五十餘公里),禁止通行載運危險物品車輛(含空車)。民國87年全年計取締載運危險物品車輛行駛禁行路段共718件,顯示有不少業者、廠商之駕駛者,心存僥倖,為貪圖一時之便利,無視公眾通行於隧道之安全。因此,除主管機關能持續進行宣導之工作外,對於違反規定者取締告發後,並應強制載運危險物品車輛至最近交流道下匝道,以維用路人在於隧道群之行車安全。

#### 3.隧道內開頭燈:

由於隧道內燈光不足,特別是隧道內外光線差異較為明顯時段,駕駛人常因光線不足或眩光現象,造成駕駛人對於前後方車輛辨識不易,影響行車安全,因此,高速公路管制規則第9條第1項13款規定,行經隧道內應開頭燈,加以隧道內光源,便於顯示本車與前後車之相關位置,增進行車安全。然目前國內駕駛人行駛於隧道路段,尚未普遍能打開車燈之習性,加以執法環境及技術上存在問題,以致其執行成效並未有效落實。

## 參、隧道群(區)車流特性分析

為了解隧道群之車流特性,本文乃以各交流道作為區段,分為中和至安坑段、安坑至新店段、新店至木柵段、木柵至汐止系統段及台北聯絡道段等五個路段,依不同的時段、路段及行車速率變化,進行分析。

## 一、流量特性:

## 1.隧道群各路段流量分析:

各區段之全年總流量、每月平均流量及每日平均流量,如表 2 所示。 表 2 隧道群流量統計表

單位:輛

|      |       | 中和-安坑      | 安坑-新店      | 新店-木柵      | 木柵-汐止系統    | 台北聯絡道      |
|------|-------|------------|------------|------------|------------|------------|
| 全年   | 總合計   | 47,419,224 | 37,531,236 | 34,653,708 | 35,348,832 | 24,200,484 |
| 不均包日 | 北(東)向 | 1,948,731  | 1,588,478  | 1,426,080  | 1,448,060  | 1,032,260  |
| 平均每月 | 南(西)向 | 2,002,871  | 1,539,125  | 1,461,729  | 1,497,676  | 984,447    |
| 不护信日 | 北(東)向 | 64,958     | 52,949     | 47,536     | 48,269     | 34,409     |
| 平均每日 | 南(西)向 | 66,762     | 51,304     | 48,724     | 49,923     | 32,815     |

由表 2 發現,中和至安坑路段之車流量明顯較其他路段高,主要是因為此路段連接台北市(水源快速道)及台北縣各主要市鎮(板橋、中和、永和)和的連絡道;另藉由台北聯絡道,可直達台北市區辛亥路,此路段車流量亦較高。上表除台北聯絡道為單向二車道外,其餘均為同向三車道。

## 2.隧道內各時段南北向流量分析:

為了解每日各時段之流量分佈,抽選 22 公里木柵隧道南北向車流量分析,如圖 2。

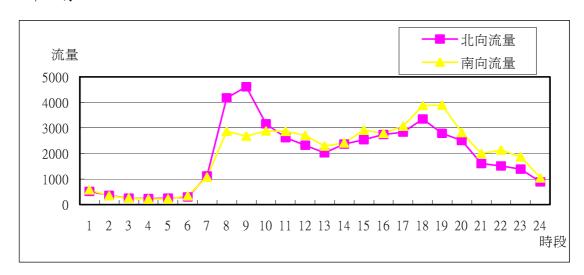



圖 2 木栅隧道內各時段南北向流量分佈圖

由 2 圖可知,上下午尖峰時段車流量明顯增多, 上午尖峰時段北向流量比南向流量大,下午尖峰時段 則南向車流量多於北向,深夜 0-6 時南北向流量均降 至 500 輛/小時以下。隧道群各時段之平均流量整理 表 3。

表 3 各時段平均流量表

|      | 平均流量 |
|------|------|
| 上午尖峰 | 3581 |
| 下午尖峰 | 3476 |
| 一般日間 | 2657 |
| 夜間時段 | 1553 |
| 深夜時段 | 321  |

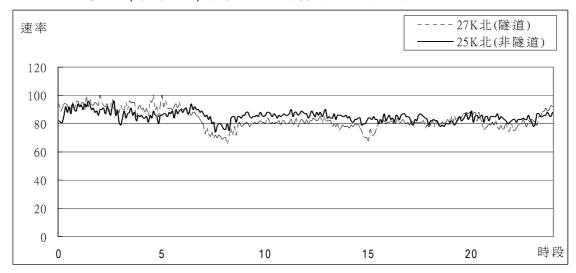
單位: (3車道-輛/小時)

## 3.隧道內各車道佔有率分析

為了解隧道內各車道大小型車分佈情形,統計新店隧道內車流量平均數, 如表 4 所示。

表 4 新店隧道內各車道佔有率分析表

|   |     |    | 內側車道 |      | 中間車道 |     | 外側車道 |      | 合計   |      |
|---|-----|----|------|------|------|-----|------|------|------|------|
|   |     |    | 大型車  | 小型車  | 大型車  | 小型車 | 大型車  | 小型車  | 大型車  | 小型車  |
| 尖 | 峰 時 | 段  | 63   | 1274 | 67   | 953 | 113  | 1094 | 243  | 3321 |
| 百 | 分   | 比  | 26%  | 38%  | 28%  | 28% | 46%  | 34%  | 100% | 100% |
| 非 | 尖峰區 | 静段 | 56   | 1088 | 172  | 891 | 96   | 390  | 324  | 2369 |
| 百 | 分   | 比  | 17%  | 46%  | 53%  | 37% | 30%  | 17%  | 100% | 100% |


單位:輛/小時

由表 4 所示,小型車在尖峰時段行駛隧道,以內側車道最多,次為中間及外側車道,在非尖峰時段,小車行駛外側車道比例明顯減少至 17%;至於大型車部分,以行駛在外側及中間車道為主,然在尖峰及非尖峰時段仍有 26%及 17%之大型車行駛內側車道,顯示大型車違規行駛情形相當嚴重(同向三車道,大型車禁行內側車道),加之隧道內禁止變換車道限制,將造成各車道速差變大,而嚴重會影響到車輛行駛速率及行車安全。

## 二、速率特性:

### 1.隧道及非隧道區速率分佈

為研究隧道區及非隧道區行駛環境不同,而對行車速率產生何種影響及變化,抽選一日(非例假日)所得流量分佈資料,如圖3所示。



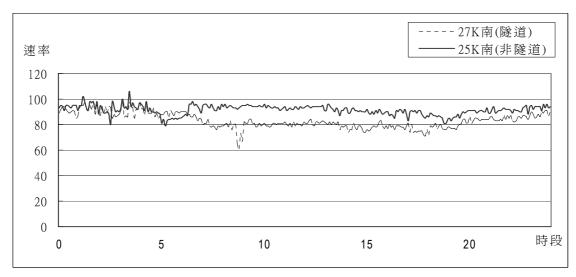



圖 3 隧道區與非隧道區各時段速率分佈圖

圖 3 所示,在深夜時段於北向車道,車輛行駛於隧道內之速度大於非隧道路段,其餘時段及南向時段,非隧道路段之車速均略大於隧道路段。深夜時段,由於車流量小,隧道內照明充足,行駛速率較隧道外路段高,其他時段,則速率較隧道外路段低,甚至在上、下午尖峰時段,在隧道路段內因流量大 到達擁擠程度後,車速明顯降低許多,顯示一封閉性之隧道環境,在行車速率上除深夜時段,通常都較非隧道低。

#### 2. 隧道及非隧道區各時段速率分析

為了解車流在隧道路段及非隧道路段之變化,在尖峰時段、一般日間時段、夜間時段及深夜時段,將兩路段車流速率,進行比較分析,如表 4 所示。

| 主 1 | 际 活 | 區與非隧道       | 厄夕咗奶油 | <b>密</b> 八 七 圭 |
|-----|-----|-------------|-------|----------------|
| 衣 4 | 一路坦 | 脚脚排   隊 1 目 | 而合册投狱 | 华分析衣           |

|         | 非    | 隧道(25KN) | )    | 隧道(27KN) |        |      |  |
|---------|------|----------|------|----------|--------|------|--|
|         | 平均速率 | 第85%速率   | 標準差  | 平均速率     | 第85%速率 | 標準差  |  |
| 上午尖峰時段  | 82   | 85       | 3.83 | 74       | 78.5   | 3.85 |  |
| 下午尖峰時段  | 82   | 84.5     | 2.56 | 80       | 81.5   | 1.5  |  |
| 一般日間時段  | 87   | 88.5     | 1.55 | 82       | 83.5   | 1.77 |  |
| 夜 間 時 段 | 82   | 84.5     | 2.56 | 79       | 81.5   | 2.84 |  |
| 深 夜 時 段 | 90   | 93.5     | 3.39 | 93       | 96.1   | 3.04 |  |

由表 4 可知,一般日間時段。行駛於隧道及非隧道路段,速率變化較小(標準差為 1.55 及 1.77);隧道內的行車速率均較非隧道區為低,主要是受隧道幾何環境的影響;另隧道內行車速率的差異,在下午尖峰時段,隧道內、外行車速率差異明顯,主要由於車輛受禁止變換車道之管制影響,深夜時段則因車流量少,因此速率變化較大。

#### 三、小結:

由上述對於隧道內及隧道外車流特性分析,可以得知:

- 1.隧道群(區)各區段之車流量,受到臨近市鎮地理位置及臨接要道之影響而有所不同,以中和至安坑路段、台北聯絡道等兩路段為最多。
- 2.隧道群(區)各時段流量狀況,以上、下午尖峰時段流量明顯增高,可見該路段 在上下、午尖峰有其需要性,另在深夜時段車流量明顯降低甚多。
- 3.隧道內各車種車道分布情形,仍有近二成之大型車違規行駛內側車道,對隧 道內整體行駛速率,必有其衝擊及影響。
- 4.在行車速率方面,隧道內行駛速率明顯比隧道外低,但於北向 27 公里(新店) 隧道發現,在深夜時段隧道內車速大於道外,除可能受到外在環境因素的影響,應再蒐集其他隧道之相關資料,做進一步研究。
- 5.各時段速率分析比較所得,一般日間時段在隧道內、外,行車速率差異小, 在深夜及上午尖峰時段,隧道內、外差異大。

## 肆、隧道群(區)行車事故分析

為了解隧道群(區)所發生交通事故之特性,本研究蒐集了87年1月至12月交通事故資料,蒐集範圍自指標10公里(汐止系統交流道)至指標40公里(含台北聯絡道),並對本研究定義及事故分析做一說明。

#### 一、定義:

1.事故嚴重性:對於事故地點之分析,基本上考量其肇事嚴重程度,交通部運輸研究所對於國內肇事嚴重性做了定義,其公式為:

 $ETAN=(9.5\times F)+3.5\times J)+TAN$ 

#### 其中

ETAN:為肇事當次數

F:為肇事死亡次數

J:為肇事受傷人數

TAN:為肇事總次數

本研究所定義之肇事當量即引用上述之概念。

- 2.隧道路段事故:係指在隧道內發生之事故
- 3.臨近隧道路段事故:係指在隧道出(入)口向外延伸300公尺之路段所發生之事故。在日間及夜間時段,由於隧道內、外光線輝度分布不均勻,行車通過隧道的出入口路段時,駕駛人的視覺組織對明暗的適應性較為遲緩,以至於無法維持機能的平衡狀態[1],此一路段,駕駛人受到視覺影響而產生駕駛行為的不同,更甚而發生交通事故,因此,以駕駛人生理及心理受到影響至完全恢復假設約須12秒,以行速90公里/小時計算,約行駛300公尺,因此定義該路段為隧道臨近路段。另外由於木柵隧道南口至景美隧道北口過近,新店隧道南口至碧潭隧道北口、安坑隧道南口至中和隧道北口及台北Ⅱ隧道至辛亥路起點均過於接近,因此上述路段亦定義為隧道臨近路段。
- 3.一般路段事故:一般路段事故,則是非隧道路段及非臨近隧道路段所之發生 之事故。

## 二、隧道群(區)事故分析

### 1.彙總分析:

統計 87 全年度隧道群(區)交通事故案件,如表 5,在隧道路段及臨近隧道路段之肇事率分別為 23.4 及 25.8(件/公里),明顯較一般路段肇事率 18.8(件/公里)高出 4.6 及 7(件/公里);在隧道臨近路段之肇事死亡率高出一般路段 0.1(人/公里),隧道路段之肇事受傷率高於一般路段 0.4(人/公里),可見隧道路段及隧道臨路段之肇事嚴重性均較一般路段為高。

|        | 路段長度    | 件數  | 肇事率   | 死亡  | 死亡率    | 受傷  | 受傷率    |
|--------|---------|-----|-------|-----|--------|-----|--------|
|        | (公里)    | (件) | (件數/公 | (人) | (人/公里) | (人) | (人/公里) |
| 隧道路段   | 8. 545  | 200 | 23.4  | 2   | 0.2    | 31  | 3.6    |
| 臨近隧道路段 | 5. 391  | 139 | 25.8  | 2   | 0.4    | 17  | 3. 2   |
| 一般路段   | 20.81   | 391 | 18.8  | 7   | 0.3    | 66  | 3. 2   |
| 合 計    | 34. 746 | 730 | 21    | 11  | 0.3    | 114 | 3.3    |

表 5 87 年隧道群(區)事故統計表

#### 2.肇事地點嚴重性分析:

依各路段肇事嚴重性分析,如圖 4 所示,南向路段依其嚴重性排序說明: 1.南向 20 公里處福德隧道出口至木柵交流道段之肇事最高(當量和 48); 2.南向 36 公里處,中和交流道當量和 40 次高; 3.南向 26 及 27 公里處,新店隧道內及新店交流道附近,當量和分別為 37 及 34; 其次在南向 35 公里中和隧道處、南向 33 公里安坑隧道至中和隧道間,當量和均為 30。

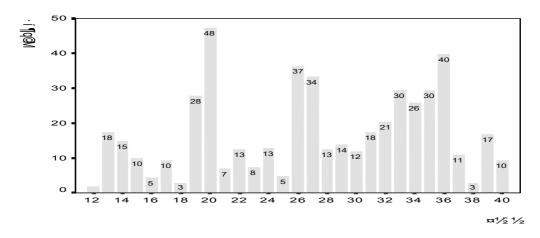



圖 4 南向路段肇事嚴重性

圖 5 表示為北向路段肇事嚴重性情形,依其排序情形說明:1.北向 20 公里處木柵隧道出口至木柵交流道處,當量和為 50;2.北向 35 公里中和隧道出口至中和交流道當量和為 49 次高;3.北向 29 公里碧潭隧道出口路段及北向 38 公里路段當量和為 39;4.北向 11、12 公里為北二高北端近汐止系統交流道,其當量和分別為 37 及 33。

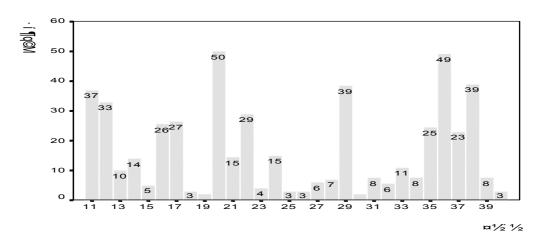
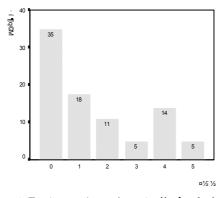




圖 5 北向路段肇事嚴重性



20 10 10 8 12 10 7 公里

圖7台北聯絡道西向肇事嚴重性

圖 8 台北聯絡道東向肇事嚴重性

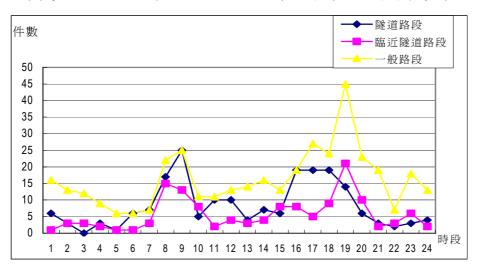
圖 6 表示台北聯絡道西向肇事嚴重情形,以西向 0 公里處,亦為台北Ⅱ隧道至辛亥路口,當量和為 36;圖 7 表示台北聯絡道東向肇事嚴重情,以東向

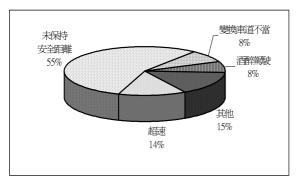
5公里,連接木柵交流道,該亦有號誌管制主線匝道及聯絡道之車流。

綜合上述分析:1.木柵交流道之肇事嚴重性最高,該處為福德隧道南下、木柵交流道北上及台北聯絡道交會之處,上、下午尖峰時段車流回堵至主線車道,且隧道出口又緊臨匝道,因此容易發生事故;2.中和隧道至中和交流道類似木柵交流道情形,上、下午尖峰時段南下路段均回堵至中和隧道內,亦對行車有所影響;3.台北Ⅱ隧道西向出口緊臨台北聯絡道西端辛亥路出口,上、下午時段及平日流量稍大,即會回堵至隧道內。4.台北聯絡道東向5公里處,即木柵交流道處,上、下午尖峰時段車流量大,又台北聯絡道於該路段有號誌設計,車輛因受號誌管制停等,及進出匝道因流量大而產生之追撞事故。5.北向29公里碧潭隧道出口路段,該隧道及出隧道路段係屬彎路,亦因受視覺及路段設計之影響;6.北向汐止系統交流道出口因受中山高匝道儀控及地形之影響,車流量大時亦容易在匝道產生追撞事故。

## 3.肇事時段分析:

圖 9 所示,在隧道群(區)一般路段,肇事件數以下午 19-20 時為最高,其次在上午尖峰 8-9 時及下午尖峰 17-18 時;在隧道路段以上午尖峰 8-9 時及下午尖峰 16-18 時為最多;在臨近隧道路段,以上午尖峰 8-9 時及 19-20 時段發生件數為最多,可見隧道群路段仍以上、下午尖峰時段仍是高肇事時段。





圖 9 肇事時段分析

#### 4.肇事原因分析

隧道群肇事原因統計如表 6 所示,並對於隧道內及臨近隧道路段進行分析,如圖 10、11。隧道群路段肇因均以未保持安全距離為最高,其次為超速。從隧道內及臨近隧道路段比較分析所得,隧道內雖禁止變換車,但因變換車道不當而肇事佔有 8%;隧道臨近路段因變換車道不當亦有 12%,在前述曾提及隧道臨近路段,因光線變化而使視覺機能易受影響,加以駕駛人輕率變換車道,則容易發生事故;因超速而肇事者佔有 14%及 10%。

表 6 肇事原因統計表

|        | 超速  | 未保持安全距離 | 變換車道不當 | 酒醉駕駛 | 其他  | 小計  |
|--------|-----|---------|--------|------|-----|-----|
| 隧道路段   | 27  | 111     | 16     | 15   | 31  | 200 |
| 臨近隧道路段 | 14  | 76      | 16     | 12   | 21  | 139 |
| 一般路段   | 82  | 163     | 46     | 42   | 58  | 339 |
| 合 計    | 123 | 350     | 78     | 69   | 110 | 730 |



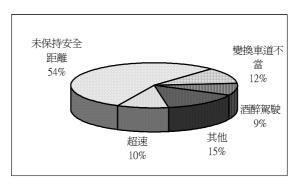



圖 10 隧道路段肇事原因分析

圖 11 臨近隧道路段肇事原因分析

### 5.肇事型態分析

隧道群(區)路段之肇事型態,是以追撞、擦撞及撞護欄(單方肇事)為主,而追撞型態經統計最主要肇因為未保持安全距離,擦撞型態最主要肇因為變換車道不當。肇事型態在隧道路段及一般路段所佔之比例差異並不顯著,但臨近隧道路段在追撞型態方面有 63%,比其他兩路段均高。另由於隧道內禁止變換車道,部分車輛可能行駛出隧道後,即於臨近路段變換車道,因而產生擦撞事故,亦須做個別分析。

追撞 擦撞 撞護柵 其他 小計 200 道 路 段 106(53%) 48(24%) 45(22.5%) 1(0.5%)30(22%) 139 臨近隧道路段 88(63%) 20(14%) 1(1%) 般 路 段 202(52%) 96(25%) 391 91(22%) 2(1%)730 計 | 396(54%) | 174(24%) | 156(21%) 4(1%)

表7 肇事型態統計

件(百分比)

## 6.肇事天候分析

隧道群路段肇事天候平均晴天佔有56%,雨天佔44%,而在隧道路段在雨天肇事卻51%,隧道路段內不會受因天雨影響,僅有隧道出入口區及地面會有溼滑情形,而臨近隧道路段,僅佔33%,是否為天雨情形而駛駕駛人更加小心,使肇事率較其他路段為低,有待深入研究。

表8 肇事天候統計

|   |     |    |   | 晴天       | 雨天       |
|---|-----|----|---|----------|----------|
| 隧 | 道   | 路  | 段 | 98(49%)  | 102(51%) |
| 臨 | 近 隧 | 道路 | 段 | 94(67%)  | 45(33%)  |
| _ | 般   | 路  | 段 | 218(56%) | 173(44%) |
| 合 |     |    | 計 | 410(56%) | 320(44%) |

件(百分比)

## 7.肇事車種分析:

肇事車種統計,詳如表 9 所示。一般路段及臨近隧道路段與隧道群合計之差異值不大,反而於隧道路段,大型車佔有及小貨車各佔有 22%,比其他路段高。在隧道內大型車發生肇事,翻覆或無法自行移動,或整體貨物(如貨櫃)掉落於車道上,由於受隧道高度的限制,大型吊車無法作業,除增長事故處理時間,因而延滯後續車流之行進,有極大之影響。

表9 肇事車種統計表

|      | 大型車       | 小客車          | 小貨車      | 其他    | 合計  |
|------|-----------|--------------|----------|-------|-----|
| 隧道路. | 段 44(22%  | ) 114(56%)   | 42(22%)  | 0     | 200 |
| 臨近隧道 | 路 14(12%  | ) 100(72%)   | 21(14%)  | 3(2%) | 139 |
| 一般路  | 段 53(14%  | ) 265(68%)   | 69(17%)  | 4(1%) | 391 |
| 合    | 計 111(15% | (a) 497(66%) | 132(18%) | 7(1%) | 730 |

件(百分比)

## 8. 小結

對於上述隧道事故資料之分析,可以得知:

- 1.隧道路段及臨近隧道路段,經過事故資料統計,肇事率有明顯偏高,係受隧 道路段封閉之特性及臨近隧道路段光線變化,而影響視覺機能,產生對駕駛 行為之改變,以及駕駛人預期隧道內並無警車停駐執法,而表現出超速、任 意變換車道等危險駕駛行為。
- 2.易肇事地點、時段、原因、型態分析,以隧道出口臨近交流道路段,在上下午尖峰時段,車流量多甚至回堵至主線或隧道內,易因未保持安全距離或未注意前方動態而發生追撞事故。
- 3.隧道內雖禁止變換車道,仍因變換車道不當而至生事故,可見駕駛人對於標線之設置仍然漠視,駕駛行為及觀念有待改進。
- 4.在天候型態分析方面,臨近隧道路段因光線變化及雨天之關係,對駕駛者有極大影響,而在事故發生所佔比例卻不高,亦值得深入探討。

## 伍、結論與建議

經由隧道群車流特性及行車事故分析,可得下列數點結論:

- 1.高速公路隧道群之設計,目前以北部第二高速公路為首見,經由探討車流及 行車事分析,對日後隧道群之管理、處理事故及執法重點,提供相關之依據, 亦對日後北宜高速公路(亦為隧道群之公路)通車後,有相當多的助益。
- 2.對於隧道及交流道相關位置之設計,尤以交流道之容量不足,且連接之市鎮 地發交通量大,在上下午尖峰時段易回堵至主線車道,甚至是隧道內,影響 隧道行車安全。
- 3.隧道內之內側車道雖亦禁行大型車,以及隧道內禁止變換車道,亦有不少用 路人違規,更甚因而發生事故,在執法取締方面,仍應持續,以維行車之安 全。
- 4.隧道內大型車之翻覆、貨櫃掉落,因受隧道高度之限制,且目前並無有效立即排除之作業處理及機具,一旦發生,勢必延長處理事故時間,則影響續進之車流,增加行旅時間。
- 5.對於隧道群車流特性及行車事故分析,可再繼續依據現有資料,對不同隧道 進行車流及事故做交叉分析比較,以求對隧道行車特性能有更深入之研究及 了解,以供管理及執法依據。

# 參考文獻

- 1. 國道高速公路局,隧道管理標準作業之研究,民國84年5月。
- 2.王文麟,交通工程學-理論與實用(修正版),民國87年9月。
- 3. 陳高村, 道路交通事故處理與鑑定, 民國86年5月。
- 4.徐國鈞,建構專家系統行事公路事件管理標準作業程序之評估研究,成功大學交通管理科學研究所碩士論文,84年6月。
- 5.謝東岳,隧道照明影響駕駛人因素與行車安全之研究,成功大學交通管理科學研究所碩士論文,83年6月。
- 6.國道公路警察局第六警察隊87年年報資料,民國88年1月。